Reasoning and diagnostics Part II

In this issue, Barney Donohew explores critical thinking

Published:  13 March, 2017

We began this journey last issue, so to recap: We need solid reasoning skills to carry out effective diagnostics; persistently good decision making doesn't happen by chance. Possibly out of convenience these skills are often underestimated and undervalued by people, both in and out of the trade. We must raise awareness of the discipline and precision of thought necessary for logical and critical thinking: so we can be better rewarded for our efforts; and to make sure they are consistently and properly applied.

Reasoning, arguments and hypotheses
We covered some fundamentals in my last article: we explain our reasoning using arguments, which contain statements supporting a conclusion; one type of argument, a deductive argument, should guarantee the truth of its conclusion (if it is sound); however, we need to use critical-thinking to check this, by making sure i) there are no other possible conclusions (which makes it a valid argument) and ii) the supporting statements are true.

Within our workshops we constantly face plausible but invalid deductive arguments where the initial statements are true but the conclusion is not guaranteed:

1) The vehicle has faults. Vehicle faults cause DTCs. So, the vehicle has DTCs
2) The vehicle has no DTCs. Vehicle faults cause DTCs. So, the vehicle has no faults

Most of us are wise to the unsound conclusions in these examples, although we have not always been and certainly many of our customers are not.

In diagnostics, deductive arguments are best used when we need to totally justify a conclusion after evaluating a specific system or component test result (e.g. A volt drop above 250mV between these two points on this wire indicates a high resistance fault. The Volt drop is 3 Volts. Therefore, the wire has a high resistance fault between these points.)

How do we justify which test to perform next? We do that by first predicting (making a hypothesis) where the fault might lie by using the observations made within our case (e.g. the symptoms, DTCs and test conclusions). We do not know for sure what the fault might be for any given set of observations (otherwise we would not need diagnostic testing!), so we must make an educated guess as to the probable or possible causes. In these cases, we must use inductive or abductive arguments.

Imagine a vehicle reporting a P0671 DTC (Cylinder no. 1 glow plug circuit) within the engine ECU. There are no other discernible symptoms. Where should we start our diagnostic process and how would we justify it?

Very likely we would decide to test the glow-plug supply voltage and current draw, as our experience tells us that when there is only one glow plug DTC then it is likely that the glow plug itself has gone open circuit. This is an inductive argument; written formally it becomes:

Almost every time I have read just one glow-plug DTC from an engine ECU (specifically either P0671, P0672, P0673 or P0674), the glow plug within the indicated cylinder has been open circuit. This engine ECU is reporting a P0671 DTC. Therefore, the glow plug in cylinder no. 1 is open circuit.

From our prior knowledge, we have extrapolated a conclusion predicting the probable cause of an observed DTC; i.e. we have hypothesised a likely fault within a candidate component. From a perspective of critical-thinking we must bear in mind that the conclusion is not guaranteed to be true. This is a feature of all inductive arguments and we can only assess them relative to the strength of their arguments. Diagnostically, we might use our critical-thinking to weigh-up whether the strength of an inductive argument (amongst other factors) justifies us carrying out a system or component test, but it is unwise to rely on it to entirely accept or reject any hypothesis about what is the fault. The glow-plug example could be classed as a mildly strong argument. A stronger inductive argument might be:

Every time I disconnect a CKP sensor on a running vehicle the engine stops. Therefore, if I disconnect the CKP on this vehicle the engine will stop. [I have yet to come across a vehicle where this has not been the case but there remains the (admittedly very slim) possibility that an engine on some vehicle somewhere in the world at some point in time might continue running with its crank position sensor disconnected].

Essentially the inductive arguments above describe case-based reasoning: "This set of symptoms is like those I observed in a previous case. By analogy, the fault might be caused by..." However, experience can be a double-edged sword: we must be flexible in our reasoning and able to revise our beliefs if necessary; especially in the face of rapidly evolving automotive technology, where any given symptom might be caused by an increasing myriad of potential faults.

Even the most knowledgeable amongst us face situations in which they have only limited experience, understanding or exposure; whether that pertains to an entire system, subsystem or the outset of a case displaying a sparse set of symptoms not previously encountered. It happens to all of us. Regularly. So, if, for example, we find ourselves with a vehicle exhibiting some odd, never seen before, behaviour, what is it we do (after checking all the basics, of course) that gets us to the point of selecting a given system or component test?

Well, we might use parts darts or a brute-force attack (sequentially testing each component one by one) or perhaps something better?! How about if we use theories (hypotheses) that relate component faults to possible symptoms and find the best match of these to the set of observed symptoms to try to predict the likely cause of the problem? If this happens to be what you do, then you are doing the right thing; it is a creative hypothesis forming process known as abductive reasoning and is the most skilful and challenging part of diagnostics. Although it is often summarised as "forming your best guess" it is the only diagnostic strategy that, with practice and knowledge, will allow you to complete the diagnostic process efficiently and effectively.

The hypotheses we form must fit within all existing knowledge regarding system and component behaviour and explain the causes of any possible sparse and/or diverse set of observed symptoms, as well as any new observation added to that set (otherwise a new hypothesis will be required).

Think back to the first time you encountered a P0171 DTC (system too lean), still a (infamously) problematic scenario for many. It is the perfect scenario for an abductive approach: for this symptom, we must consider a set of possible faults and their side-effects, e.g. what faults might cause the engine to sense more air than it is expecting (i.e. air intake leak downstream of air-mass meter; under-reading air mass-meter; faulty oxygen sensor; faulty throttle position actuator or sensor etc.) and relate them to the observed DTC and any other symptoms (e.g. erratic engine idle). Each possible candidate system or component will have its own chance of being the actual fault and we must proceed with our diagnostic testing and systematically prove (using deductive evaluation of system and component test results) where it lies.

Messing with memes
Over the last couple of years, a meme has entered the consciousness of many technicians and readers of Aftermarket Magazine: #testnotguess. Whilst appropriate, with our new knowledge, we see that it could be replaced with an alternative meme to more accurately convey the entire diagnostic process and provide positive instruction: #guessthentest. Given that we must use our imagination to create a hypothesis (which we must test), our imagination is a valuable tool within our diagnostic arsenal (and must be recognised as such); if we view guessing as either an act of induction from our prior knowledge or, the more creative, process of abduction, then the meme neatly encapsulates fault-finding.

Summing up
We can use inductive arguments to justify, with some probability, which potential fault might cause any observed set of symptoms based on our past experiences or knowledge.

We use abductive reasoning when we need to predict a set of symptoms, from their hypothesised relationships to possible component faults, that best match (or cover) an observed set of symptoms. Neither reasoning method guarantees the truth of their conclusions and must be validated.

Related Articles

  • Under pressure 

    Even apparently simple problems require thorough investigation if you want to diagnose faults right the first time

  • DENSO launches new sensors for Toyota and Lexus  

    DENSO has added 10 camshaft and crankshaft position sensors to its range. The five new crankshaft position sensors have 129 applications across the Toyota and Lexus range incorporating both past and present vehicle models. The eight new camshaft position sensors have 119 applications across the same vehicle pool.

  • SO FAR... so good 

    You may have read about some of the challenges that the aftermarket has faced over the last year or two as part of the vehicle Type Approval revisions – with their inherent ‘rights of access to repair and maintenance information’ and the associated fight to maintain access to the vehicle data via the ever-so-not-so-humble 16 pin OBD connector.

    The draft vehicle Type Approval document has been agreed by the European Commission and the Council (Member States), but has now to be approved by the European Parliament before becoming the final version which in turn, will become new legislation. However, as many of the key aftermarket amendments were tabled by the Parliament, it seems unlikely that these will be changed, but there is always an uncertainty until the final plenary vote is done.
    So once agreed, that will be that, as they say. Unfortunately not, as the devil is in the detail.

    Legal reference
    Firstly, there is the additional problem of existing Block Exemption and Euro 5 Regulations which do not provide the critical legal reference to enable access to in-vehicle data beyond just emissions. The standardisation requirements are included, but not the data and information for the wider diagnostic, repair and maintenance data. This means that vehicle manufacturers can claim that access to the vehicle and the corresponding ‘wider data’ does not have to be provided. This is currently being challenged by the Aftermarket Associations in Brussels, but no solution has yet been agreed for those contentious claims and there will be many vehicles on the roads with restricted access before a workable solution can be agreed and implemented.

    As vehicle manufacturers are likely to be in contradiction with these existing Type Approval requirements, it is also likely that they will have to provide access, but this may well be through the use of electronic certificates. As each vehicle manufacturer has their own certificate strategy (process, access criteria, data available etc.), this is still a significant problem and in some cases could mean multiple certificates are needed to work on the different vehicle systems on specific models. It is also important that certificates can be used without the necessity of having to use the vehicle manufacturer’s dedicated diagnostic tool and an online connection to their server to generate the required certificate when using the 16 pin connector.

    However, the new vehicle Type Approval legislation should now provide the legal reference for the physical connector and critically, also contain a reference to the data needed for diagnostics, OBD, repair and maintenance, but beyond these important requirements there are still other elements which have yet to be discussed or agreed.

    Logical cascade     
    These other issues revolve around the secure access for independent operators, together with the exact data that will be made available once access has been granted. This may sound strange, but the 16 pin OBD port is increasingly seen as a high security risk access point into the in-vehicle networks. Consequently, some form of controlled access is highly likely to be implemented, even for such seemingly mundane tasks as checking safety system trouble codes when conducting an MOT test. This is also likely to be a ‘certificate based’ system and this introduces a whole range of new challenges!

    To understand these various issues more clearly, there is a logical cascade which starts with the legal requirement for a connector to be fitted to a vehicle. This is covered as part of vehicle Type Approval legislation, and this legislation also includes the need for the connector to be standardised from both the aspect of the physical shape and connector pin layout, but also what data or information is needed for emission systems, as well as the communication protocols that must be used. All these legislative elements have been in place for more than two decades, but the wider use of the 16 pin connector for diagnostic, repair and maintenance requirements had until the current revision of the vehicle Type Approval legislation, not been legally referenced. Now that this has (hopefully) been addressed, the next key discussions will be about who can access the vehicle via this connector, how this can be authenticated and once access is provided, what data, information and functions will be supported.

    As mentioned earlier, this is likely to require electronic certificates, but to avoid the ‘wild west’ of different processes, access conditions and data availability, a standardised process should be considered by the legislator which also uses a single and independent point of access for certificates from all vehicle manufacturers. It should also be possible to access in-vehicle data without a certificate when the vehicle is in the workshop, although software updates may require certificates. When the vehicle is being driven, ‘read-only’ data should still be available and a certificate should only be needed if some form of ‘functional’ testing is required, but this should be considered as the exception. As there is an increasing use of ‘plug-in’ devices being used to allow remote communication with the vehicle when it is being driven for services such as insurance, or remote monitoring for prognostics and predictive maintenance, arguably, the importance of the OBD connector is increasing for these telematics services – even if the data it can provide is restricted in relation to what is available via the vehicle manufacturers’ embedded
    telematics systems.

    Further requirements
    Once data is accessed, the new General Data Protection Regulation (GDPR), which comes into force in May this year, will impose further requirements for the use and handling of personal data.  A fundamental issue will be that much of the data contained in the vehicle can also be considered personal data and is subject to data protection legislation. Critically, the customer must give their consent to the use of this data by a positive action or statement – it cannot be assumed.    

    As you can see, it may be ‘so far, so good’, but the simple task of continuing to plug into the 16 pin connector and diagnosing or repairing the vehicle is going to be far from simple, with many hurdles and challenges yet to be addressed, but the aftermarket associations, both in the UK and with their pan-European partners, are continuing to fight for the ability to do so.

  • Launch UK introduces new X431 Euro Tab 

    Launch UK, has introduced its latest addition to the X-431 range of diagnostic tools, the X-431 Euro Tab. Based on the latest Android technology and Launch vehicle software, the X-431 Euro Tab harnesses Launch’s diagnostic technology, including wide vehicle manufacturer coverage, test functions, dealer level special functions and live data with accurate comparative values. The in-built hi-res camera enables identification of the vehicle model by photographing the licence plate and VIN number, with automatic VIN recognition for most makes and models. It is supplied with a two-year warranty, two-years’ subscription and printer.

  • technologies of electric and hybrid vehicles  

    In the previous two issues, we looked at the way batteries store energy. We could in fact compare a battery to a conventional fuel tank because the battery and the tank both store energy; but one big difference between a fuel tank and a battery is the process of storing the energy. Petrol and diesel fuel are pumped into the tank in liquid/chemical form and then stored in the same form. Meanwhile, a battery is charged using electrical energy that then has to be converted (within the battery) into a chemical form so that the energy can be stored.

    One of the big problems for many potential owners of pure electric vehicles is the relatively slow process of
    re-charging the batteries compared to the short time that it takes to re-fill a petrol or diesel fuel tank. If the battery is getting low on energy, the driver then has to find somewhere to re-charge the batteries, and this leads to what is now being termed ‘range anxiety’ for drivers.

    Whilst some vehicle owners might only travel short distances and then have the facility to re-charge batteries at home, not all drivers have convenient driveways and charging facilities. Therefore, batteries will have to be re-charged at remote charging points such as at fuel stations or motorway services; and this is especially true on longer journeys. The obvious solution is a hybrid vehicle where a petrol or diesel engine drives a generator to charge the batteries and power the electric motor, and for most hybrids the engine can also directly propel the vehicle. However, much of the driving will then still rely on using the internal combustion engine that uses fossil fuels and produces unwanted emissions. The pure electric vehicle therefore remains one long term solution for significantly reducing the use of fossil fuels and unwanted emission, but this then requires achieving more acceptable battery re-charging times.

    Charging process and fast charging
    Compared with just a few years ago, charging times have reduced considerably, but there are still some situations where fully re-charging a completely discharged electric vehicle battery pack can in take as long as 20 hours.  It is still not uncommon for re-charging using home based chargers or some remote chargers to take up to 10 hours or more.

    Although there are a few problems that slow down charging times, one critical problem is the heat that is created during charging, which is a problem more associated with the lithium type batteries used in nearly all modern pure electric vehicles (as well as in laptops, mobile phones and some modern aircraft). If too much electricity (too much current) is fed into the batteries too quickly during charging, it can cause the battery cells to overheat and even start fires. Although cooling systems (often liquid cooling systems) are used to help prevent overheating, it is essential to carefully control the charging current (or charging rate) using sophisticated charging control systems that form part of the vehicle’s ‘power electronics systems.’

    Importantly, the overheating problem does in fact become more critical as battery gets closer to being fully charged, so it is in fact possible to provide a relatively high current-fast charge in the earlier stages of charging; but this fast charging must then be slowed down quite considerably when the battery charge reaches around 70% or 80% of full charge. You will therefore see charging times quoted by vehicle manufacturers that typically indicate the time to charge to 80% rather than the time to fully charge. In fact, with careful charging control, many modern battery packs can achieve an 80% charge within 30 minutes or less; but to charge the remaining 20% can then take another 30 minutes or even longer.   

    Battery modules
    Many EV battery packs are constructed using a number of individual batteries that are referred to as battery modules because they actually contain their own individual electronic control systems. Each battery module can then typically contain in the region of four to 12 individual cells.  One example is the first generation Nissan Leaf battery pack that contained 48 battery modules that each contained four cells, thus totalling 192 cells; although at the other extreme, the Tesla Model S used a different arrangement where more the 7,000 individual small cells (roughly the size of AA batteries) where used to form a complete battery pack.

    The charging control systems can use what is effectively a master controller to provide overall charging control. In many cases  the electronics contained in each battery module then provides additional localised control. The localised control systems can make use of temperature sensors that monitor the temperature of the cells contained in each battery module. This then allows the localised controller to restrict the charging rate to the individual cells to prevent overheating. Additionally, the localised controller can also regulate the charging so that the voltages of all the cells in a battery module are the same or balanced.

    One other problem that affect battery charging times is the fact that a battery supplies and has to be charged with direct current (DC) whereas most charging stations (such as home based chargers and many of the remote charging stations) provide an alternating current (AC). Therefore the vehicle’s power electronics system contains a AC to DC converter that handles all of the charging current. However, passing high currents through the AC to DC converter also creates a lot of heat, and therefore liquid cooling systems are again used to reduce temperatures of the power electronics. Even with efficient cooling systems, rapid charging using very high charging currents would require more costly AC to DC converters; therefore, the on-board AC to DC converter can in fact be the limiting factor in how quickly a battery pack can be re-charged. Some models of electric vehicle are actually offered with options of charging control systems: a standard charging control system which provides relatively slow charging or an alternative higher cost system that can handle higher currents and provide more rapid charging.

    Home & Away
    One factor to consider with home based chargers is that a low cost charger could connect directly to the household 13-amp circuit, which would provide relatively slow charging of maybe 10 hours for a battery pack. However, higher power chargers are also available that connect to the 30-amp household circuits (in the same way as some cookers and some other appliances); and assuming that the vehicle’s AC to DC converter will allow higher currents, then the charging time could be reduced to maybe 4 hours operate (but note that all the quoted times will vary with different chargers and different vehicles).

    Finally, there are high powered chargers (often referred to as super-chargers) that are usually located at motorway services or other locations. These super-chargers all provide much higher charging currents to provide fast-charging (as long as the vehicle electronics and battery pack accept the high currents); but in a lot of cases, these super-chargers contain their own AC to DC converter, which allows direct current to be supplied to the vehicle charging port. In effect, the vehicle’s on-board AC to DC charger is by-passed during charging thus eliminating the overheating problem and the high current DC is then fed directly to the battery via the charging control system.

    In reality, the potential for re-charging a battery pack to 80% of its full charge in 30 minutes or less usually relies on using one of the super-chargers, but battery technology and charging systems are improving constantly, so we
    will without doubt see improving charges times for
    newer vehicles.  

Most read content


Sign Up

For the latest news and updates from Aftermarket Magazine.


Where should the next Automechanika show be held?


Click here to submit an event


©DFA Media 1999-2016