The future of DPF servicing

Change can seem shocking at first, but is it the future?

By Frank Massey | Published:  08 May, 2017

Two months from now will bring my tenure in the motor industry to 49 years. I would like to think I have evolved, kept up with technology, enabling me to provide a professional service, enjoying customer respect and integrity. My focus has been the technical challenges, while my son David manages the commercial responsibilities.

This creates a wide role for me developing our training programme, internal research and development, bringing the focus of this topic to technical and legal compliance.

My chosen subject here is diesel servicing and repairs, specifically particulate filtration and emission control. It is something we have been passionate and vocal over for several years. it gives me no pleasure or satisfaction in seeing our prediction over the demise of diesel vehicles.

Diesel fudge

The future is now clear as to the changes our political lords and masters have in mind. This gives us a short timeline to get our house in order. My intention is to advise, help and warn what will happen if we all continue to fudge diesel particulate repairs as we currently do. Upwards of 90% of independent garages will fall into this category. How do, or should we service and recover diesel particulate filters? The choices are very simple!

1. Replace with a new OE filter

2. Replace with a non-OE filter

3. Clean and service off vehicle in factory controlled conditions

4. Clean and service off the vehicle in house

5. Clean and service on the vehicle

6. Remove the filtration system from the vehicle

Here is the problem; we as professional repairers are legally and financially responsible, and exposed for the advice and decisions we make. This is the case even if the customer agrees and or instructs us on a certain course of action.

Clear legislation is in place for the performance and fitment of diesel emission systems. Vehicle taxation is based on specific emission levels agreed with the manufacturers. I am sure I do not need to mention VW and Audi, but I will bet their corporate accountants have regrets. How long do you think it will be before the government bean counters look at us? Let's not fool ourselves enforcement will take the effect of stringent fines.

Everything

So what are we doing wrong? Pretty much everything. Please remember my words, help, advice and not critique.

We are breaking the law in removing legally compliant systems. MOT examiners will lose their licence by passing unauthorised emission system modification. You will become the first unpaid enforcers.

We are breaking the law further in polluting the water course, by power cleaning, or rinsing out cleaning agents into the drains. Utility companies have powers to set huge fines and often do.

We are also in breach of the clean air act by using some of the available cleaning agents that require the running of the engine whilst emitting all the contaminants back into the environment.

It is quite possible at this point some of you are about to rip out the magazine pages and offer an alternative use for them. Please reconsider, we are slowly killing ourselves.

Let's as an industry get together, think ahead of the curve and get our house and process in order.

Change

I recently visited CERAMEX in Slough, and before a handful out there suspect a paid endorsement here, I even paid my own travel expenses. I have been aware of several companies offering off vehicle cleaning, pressure washing, thermal cleaning in an oven, and ultrasonic treatments. My problem has always been, is the catalytic converter and DPF still fully functional and durable when refitted? How can we protect ourselves from future premature failure due to other indirect causes? Can we provide certification of test results?

Here is my opinion as to how we should address the blocked, cleaning DPF problem. Many of you will not agree, I do not care, this is how it should and eventually will be done. Reflect on the vast changes in the paint refinishing industry before you cry never!

The DPF is initially visually examined bar coded and weighed, attached by means of bespoke plumbing to what is in effect a big dishwasher (sorry Marcus my words) then filled with water. A short pause here, some of you will know water damages and degrades the precious metal wash coat. The purified water has all the damaging trace elements removed and is only used to restrict the clear DPF passages. Pressure waves, are then sent through the core, XPURGE for several minutes. I did question if this was in effect an ultrasonic process? This is not the case. The water does act as a transport mechanism for the waste material, including ash, which is flushed out, into a waste tank. The water is filtered, for reuse and the semi solids captured in large skips for reprocessing. It is pure carbon it would make an ideal fuel source!

The DPF core is then placed in electric air dryers where apart from drying the core, measurements are taken for flow rates and back pressure. Next a two-stage photograph examination is applied to detect face off and ring off cracking to the core. A second weight check is taken to ascertain the mass of soot ash removal. The next service is optional for small vehicle units, the cat and DPF are subject to a sample hot gas bench to establish the reduction of, CO/HC, finally being placed in a particulate bench where filtration is assessed and measured.

Certification

Certification and bespoke transport packaging completes the service. The recovery success is consistently above 90%. The cost is approximately half the cost of a new OE unit. No environmental pollution so your grandchildren will thank you and may avoid the huge increase in paediatric respiratory illnesses.

You will earn profit from a professional repair, enjoy the respect and integrity it brings, however not all customers will agree or want to pay, and that is not our problem.

Further information

Please contact Annette 01772 201 597, enquries@ads-global.co.uk for further information on upcoming training courses and events.

Related Articles

  • Choosing a scope  

    Having just completed a foundation oscilloscope course this weekend, it became very apparent that a large number of technicians in our industry lack good advice in both choosing and using cutting edge diagnostic tools.

  • It’s all very Scopetastic! 

    It’s been an interesting few weeks here at Auto iQ HQ. After my last article discussing the merits of “growing over buying” technicians I received a few phone calls looking for my views on the most productive path to technical enlightenment.

  • Part two The good and THE GREAT  

    In part one, we looked at the start of the ‘diagnostic process.’ The first steps were customer questioning, confirming the fault and knowing the system and its function. These help the technician to build the ‘big picture’ necessary to repair the vehicle correctly.
    In this article we will look at the next four steps.

    Step 4: Gather evidence
    It is easy to overlook this step as many technicians think of it as the overall ‘diagnosis.’ However, once the technician understands the system, gathering evidence will provide key information. This step is normally best carried out with the use of test equipment that does not mean the dismantling of systems and components.

    Many technicians have their own favourite tools and equipment but this list can include (but not limited to)
    the following:
    Scan tool – It is always best practice to record the fault codes present, erase the codes, and then recheck. This means codes which reappear are still current. Remember that a fault code will only indicate a fault with a circuit or its function. It is not always the component listed in the fault code that is at fault

    Oscilloscope – An oscilloscope can be used for a multitude of testing/initial measuring without being intrusive. Some oscilloscope equipment suppliers are looking at systems within high voltages hybrid/electric vehicle technology. The waveforms produced by the test equipment can be used when analysing the evidence and may indicate that a fault exists within a system. An understanding of the system being tested will be necessary to understand the information. This may even include performing sums so all those missed maths lessons at school may come back to haunt you. It may take time to become confident analysing the waveforms, so be patient

    Temperature measuring equipment – This can include the use of thermal imaging cameras. Most systems that produce energy/work will also produce some heat. The temperatures produced vary from system to system. Examples include everything from engine misfires to electrical components, as well as air conditioning system components and mechanical components such as brake and hub assemblies. The possibilities are endless and results can be thought provoking.

    Emission equipment – By measuring the end result, an exhaust gas analyser can show you if the engine is functioning correctly. The incorrect emissions emitted from the exhaust help indicate a system fault or a mechanical fault with the engine

    Technical service bulletins – Many vehicle manufacturers produce technical service bulletins (TSBs) that are generated by a central point (usually a technical department) from the information that is gathered from their network of dealers. Some of these may be available to the independent sector either through the VM or through a third party – It’s always worth checking if these exist. They may indicate a common fault that has been reported similar to that the technician is facing. Some test equipment suppliers may provide TSBs as part of a diagnostic tool package

    Software updates – Many vehicle systems are controlled by a ECU. Most vehicle manufacturers are constantly updating system software to overcome various faults/  customer concerns. Simply by updating the software can fix the vehicles problem without any other intervention of repairing a possible fault. This is where having a link to a vehicle manufacturer is vital in repairing the vehicle

    Hints & tips – Most technicians will have a link or access to a vehicle repair forum where they can ask various questions on vehicle faults and may get some indication of which system components are likely to cause a vehicle fault

    Functional checks – Vehicle systems are interlinked and typically share information using a vehicle network. The fault may cause another system to function incorrectly, so it is vitally important that the technician carries out a functional check to see if the reported fault has an effect on another system. By carrying out this check the technician again is building the big picture

    Actuator checks – Most systems today are capable of performing actuator tests. The technician can perform various checks to components to check its operation and if the system ECU can control the component, often reducing the time to the diagnosis, by performing this task the technician can identify whether it is the control signal, wiring or component or it is sensor wiring. This function can be used in conjunction with serial data to see how the system reacts as the component functions

    Serial (live) data – The technician can typically review a vehicle system serial data through a scan tool. Having live data readings to refer to can help you review the data captured. Using actuator checks and viewing the serial data can also help the technician to identify a system fault

    Remember to record all the evidence gathered so it can be analysed during the next step in the diagnosis. We can’t remember everything. If the technician needs to contact a technical helpline they will ask for the actual readings obtained recoding the data gathered will help.

    Step 5: Analyse the evidence
    Analysing evidence gathered during the previous steps can take time. The technician needs to build the big picture from all the evidence gathered during the first few steps. You need to analyse the information gathered, and decide on what information is right and wrong.

    This step may rely on experience as well as knowledge on the product. You should take your time – don’t be hurried. Time spent in the thinking stages of the diagnosis can save time later. Putting pressure on the technician can lead to errors being made. It may be necessary to ask the opinion of other technicians. If the evidence is documented it may be easier to analyse or share between others.

    Step 6: Plan the test routine
    After analysing the evidence gathered it’s now time to start to ‘plan’ the best way to approach to the task or tasks in hand.

    The technician should plan their test routine, decide on what test equipment should they use, what results are they expecting, if the result is good or bad  and which component should they test next.

    Document the plan – this enables you to review decisions made at this stage in the next step. The technician may not always get it right as there may be various routes to test systems/components. The test routine may have to be revisited depending on the results gathered during testing. Documenting the test routine will provide a map.  Also, don’t forget to list the stages, as this is something that could be incorporated into an invoicing structure later.

    The technician should indicate on the routine what readings they expect when they carry out the system testing. This can be generated by their own knowledge/skill or the expected readings may come from vehicle information which they have already sourced. If the information is not known at the time the test routine is planned, then the test routine may highlight what information is required and what test equipment is needed. You shouldn’t be afraid to revisit the plan at any time and ask further questions on which direction the tests should take. If the plan is well documented and the technician becomes stuck at any point, they can pause the process and revisit later. Also the information can then be shared with various helplines that support workshop networks.

    Step 7: System testing
    The technician then follows their pre-determined plan, if it is documented they can record the results of the test(s) as they follow the routine.

    Many technicians tend to go a little off-piste when they get frustrated. Having the routine documented can keep the technician on track and focused on the result. If the routine is followed and the fault cannot be found the technician may have to go back to the analysing the evidence or planning the test routine. The technician shouldn’t be scared of going back a few steps, as I said previously analysing the evidence takes practice and can be time consuming, not to be rushed.
        
    Summing up
    Remember to follow the process. It is easy to be led off track by various distractions but don’t try to short circuit the process. Some steps may take longer than first thought to accomplish than others. Some distractions may be outside of your control, and it may be necessary to educate others. Practice, practice, practice. Refine the process to fit in with your business and its practices, the business could align its estimating/cost modelling to the process, being able to charge effectively and keeping the customer informed at each stage of the process.

    Coming up...
    In the next article I will be looking at the next four steps which are; Step 8: Conclusion (the root cause), Step 9: Rectify the fault and Step 10: Recheck the system(s). The last article in this series will indicate the final three steps and how to fit them all together in order to become a great technician and perhaps succeed in Top Technician or Top Garage in 2018.



  • Ignite your interest in ignition  

    This month’s subject was prompted by a recent conversation with a colleague in Australia. The conversation included an invitation to a technical festival in October, where it was said that ignition would be one of the subjects of interest. Many years ago, when I began developing our training programme, ignition was a subject of primary concern when diagnosing gasoline
    engine problems.

    This is a complex subject often not fully understood and often overlooked. Its vital importance recently became apparent in our workshop, when we were presented with two Audi rs6 engine failures. One failure has yet to be investigated the other suffered piston failure due to combustion faults.

    The increasing complexity of homogenous and stratified fuelling, split injection delivery and variable valve timing geometry has placed critical responsibility on ignition performance. Often within the diagnostic process there is no serial evidence of an ignition problem, or that what evidence is available is incomplete especially at the early stages of failure. The process has not changed in over 30 years;  You must scope it.

    Process overview
    So here is an overview of the process. Firstly, you must understand that it requires a specific amount of energy to completely combust the air fuel charge. Ignition energy is measured in joules, our task it to ensure the energy is created and delivered correctly. The primary circuit bears the responsibility of energy creation with current profile as the focus of our measurement. The secondary circuit has the responsibility of delivery, our focus is burn time and slope profile.

    I accept that both circuits have a shared responsibility at the point of induction where energy within the primary is transferred into the secondary. The physical challenge is the method of accessibility. With static or direct ignition it is often not possible to connect to the coil primary circuit, leaving the option of induction as the method of measurement. The primary will always have a power and switched ground, so current measurement using a suitable hall clamp is always possible.

    Diagnostic observations
    The four critical diagnostic observations in order of priority are:
     
    Ignition burn time measured in milli-seconds with a range of 1-3ms depending on ignition type. Do not assume length of burn relates to energy value Primary current profile with a range of 3amps (points ignition) 20amps static ignition. Note the expression profile, it includes rise time and rate of collapse Coil ringing, this is the resonance at the end of the burn event it represents the small residual ignition energy returned in to the coil secondary winding Firing line voltage, this represents the value of electrical pressure in delivering the induced energy to the spark plug electrode it includes all components in the delivery process

    You must also understand that the performance of the injector, cylinder turbulence, and mechanical efficiency forms part of the combustion process. Intake air temperature, pumping losses and fuel quality all affect the burn process. Let’s begin with the tool I distrust the most! Serial data is a good first look – there is some very useful information such as cylinder misfire count, ignition timing individual timing retard data, air intake temperature and exhaust temperatures. There may also be additional data on burn time and primary charge time, but I don’t trust or rely on it.

    So, out with my Pico scope. Connectivity can be a challenge, over the years we have built our own probes, however, if the manufacturers can run a circuit there you can scope it. There is a simple logic process.  Begin with burn time, look at the duration and slope it – It should be roughly parallel with the horizon.

    A rising line confirms a difficult transition of energy across the electrode. Lean combustion, glazed plug, cylinder pressure, plug performance. Cylinder turbulence.

    A falling slope represents the opposite condition; low cylinder pressure, fouled or shunting plug circuit, small plug gap. The burn profile should be relatively smooth, a turbulent burn path confirms difficult in cylinder conditions. It can and does point to injector fuel delivery problems especially if a sharp rise at the end of the burn time is present.

    You may appreciate now just how vital scope evaluation is.

    Primary current path confirms good power supply and the performance of the power transistor in its ability to switch and hold load to ground. Note the rise time characteristics and the off switch, under shoot here is a good indication. If you can, observe primary voltage. Note the slow rate on load, it’s the slow rise in voltage during coil charge time, a problem here will affect current flow so go for current first its easier to understand. Remember one of my core diagnostic rules; If it moves, gets hot, or applies a load measure current!

    Coil ringing is the inverted energy returned into the coil secondary. With no path to ground,  it gradually gets weaker, converting its energy to heat. Expect 2/3 rings in current systems. If the coil windings are compromised in any way a reduction in inductance will follow. The rings will disappear, ignition energy may still be present but a reduction in value will result. Be warned this condition will never be known if not scoped and critical engine failure often follows.

    Firing line voltage can only be measured accurately in primary to be honest. Expect the following values:; Conventional rotating ignition 50v, wasted spark ignition 40v, direct ignition30v; Plus or minus 5 v on all values. The problem with exploring this with a coil probe is that the probe attenuation is not known, so its difficult to scale.

    I hope this helps. It is a very complex subject , often neglected and overlooked.

    Just before I go here is a challenge; How many information systems, VMs especially, don’t give these four  vital statistics? So how do they know if there is a problem?



  • All the things YOU could do…  

    If you had a little money, how would you spend it to improve your business? Maybe you’d buy the latest ADAS calibration kit, or subscribe to an workshop management system?

    Okay, now let’s think bigger. If you were given all the money you had ever invested in your business and could start it again from scratch, how would you gear it up to attract customers and make it profitable? Would you build something like
    your current business, or would it be totally different?

    Why do I ask? Because the world changes quickly, which means our businesses are rarely set up exactly as we need or want, and we must make frequent spending decisions. We must work out how to prioritise our spending, to ensure we always offer the things of greatest worth to our customers; i.e. we maximise our value proposition.

    Last month, we sought to understand our typical customer (a private vehicle owner). We saw that they have functional, emotional and social tasks to complete (jobs). These jobs have either good results (gains), or bad outcomes, risks and obstacles, related to their undertaking or failure (pains). For example, taking a car to the workshop is an extreme pain for a typical customer because it makes it more difficult for them to complete their more important jobs (e.g. commute to work or navigate the school run).

    This month, we’ll use the things we learned about our customers to design our value proposition; We’ll use a repeatable technique to ensure our businesses offer the things our customers need and want. The result will be a value (proposition) map, or value map for short.

    Value mapping
    Anything that helps our customers get their jobs done will have value. Therefore, our products and services must aim to help them complete their jobs. If these products and services then eliminate a customer’s pains, they are pain relievers, or, if they produce gains, they become gain creators. By stating the ways in which our products and services create gains and relieve pains, we can communicate their potential benefit to our customers. Hence, by putting a list of our products and services together with the lists of their respective pain relievers and gain creators, we create a guide to the worth of our business to our customers. That is, we make a value map.

    Of course, not all our products and services, and their subsequent pain relievers and gain creators, are equally relevant to our customers; some are essential, whilst others are merely nice to have. We can use these differences to help our decision making: by ranking the items in our value map in their order of relevance to our customer, we can see which can be ignored, and which can be prioritised.

    Figure 1 shows example items that might be within an independent workshop’s value map, ranked in order of relevance to a private-vehicle-owning customer (a value map is targeted at a specific customer segment). As with the creation of a customer profile, there is no ‘right’ answer; this one is based on my half-thought-through assumptions, and previous business experiences. Yours might differ. Hence, we must derive and tweak our respective value maps accordingly. Ultimately, each of us would use business metrics (e.g. profit ratios and customer satisfaction ratings) to tune our value propositions to the max. But that’s a task for another time.

    Products and services
    We saw before that customers don’t like to waste time at a workshop; they want to go through their lives with the minimum of hassle. They crave convenience. Therefore, courtesy cars, a handy location (covered under ‘community-orientated’ services in Figure 1), extended opening-hours, while-you-wait servicing, or pick-up and returns (either vehicle or customer) all represent high value offerings. We don’t have to offer them all - they’re included in Figure 1 for reference. Likewise, online bookings and related management systems simplify engagement, bring convenience, and enhance value.

    Have you ever heard a customer say they like messy and dirty workshops and technicians? I haven’t. That’s because we attach value to our health and safety: If your premises and staff are well presented, they will project professionalism, and your customers will reach their desired emotional state of feeling safe. Even better, properly motivated, well-equipped and trained staff will increase the likelihood that your customers are safe and secure. As safety fears are powerful motivators and manipulators, we must use our expertise to help our customers assess and manage their exposure to risks. They will then be in control and feel in control of their safety.

    Not all customers will be seeking to cut costs all the time, but certainly all of them will want to control their costs. There are ways a business can help customers manage this aspect of their lives: clear terms of trade and fee structures; well-managed engagements with expert advice; warranted parts and labour; and a range of payment methods such as easy-pay solutions, touch-less, or credit card services.

    Surprisingly, some customers want to look after their vehicles. Primarily, this helps them feel safe and secure, minimises the risk of disruption to their lives (from breakdowns), and protects the value of their vehicles. A good service history represents monetary value in this sense. This means we should be offering, high quality parts and labour, and OE-aligned servicing and repairs.

    Pain relievers
    It might suit your ego to think all your customers visit your workshop because of your skill, expertise and professionalism, or your friendly welcome and great (i.e. free) coffee. However, pure convenience can be the decisive factor when some customers choose where to take their vehicles: you’re around the corner; you had a spare courtesy car; you’re open; you were prepared to look at it there and then; you had the part in stock etc. Whilst this reflects the significant value these pain relievers offer to all our customers, it is the case that some of those who value convenience above all else are not able to see the worth of your other products and services. If they don’t understand that your conveniences come at a cost, then point them elsewhere. You will never please them. Nothing has the potential to sour a relationship like an unexpected bill: When my head was buried in an absorbing diagnostic job, adequate communication was sometimes an issue for me. My ‘solution’ was to swallow the costs, to avoid upsetting the customer. This was neither a solution nor a sustainable business strategy. What I really needed was the best preventative medicine of all: Great communication.

    It should be no surprise that there are far more pains than gains in our value map: Servicing and repair workshops are all about pain relief; we are either trying to eliminate a current pain, through diagnostics and repairs, or carrying out preventative maintenance to avoid a future pain. Because this is our reason for being, customers find it intolerable to think our actions have caused them unnecessary inconvenience or costs. Nowhere is this more obvious than when we try to ‘help them out’ -  Every time we ever tried to help a customer to control costs (i.e cut costs), by fitting a cheaper part or trying a less expensive solution, it always backfired. Every single time. Can you guess who suffered the consequences? It always paid us better to ensure the car was fixed when it left the workshop. ‘Try it and see’ tends to translate into ‘you are going to be really cheesed off next time I see you’, It also counted that we supplied quality, parts and labour.

    Gain creators
    When properly delivered, our products and services will help our customers have the following: An easy-life; a car that holds its value and works properly; peace of mind; a sense of feeling special at our premises; and the information from our sound advice to make good decisions.

    However, for some of us, the ultimate convenience is to not have to engage our brain, so if we really want to take our value proposition to the next level, we must be highly proactive and perform our customers’ thinking for them: e.g. by sending MOT and service reminders, with easy to process ‘calls to action’ so that they are only a click away from being sorted. Then, at the allocated time, we would pick-up their vehicles from their homes to take them to the workshop, leaving a replacement vehicle in their place. I know plenty of businesses that do this. And they are successful.

    Money, money, money
    There are many servicing and repair options available to private vehicles owners: Independent workshops, fast-fit chains, main-dealer workshops, mobile technicians, chancers, etc. Next time we’ll see how other business types deliberately tweak their offerings (value maps) to fit specific customer segments. We need to learn to be equally deliberate and well-informed about our investment decisions. What if we don’t? Well, we might waste all our money, and lose all our customers. Which isn’t always funny, even in a rich man’s world.


    https://automotiveanalytics.net


Search

Sign Up

For the latest news and updates from Aftermarket Magazine.


Poll

Where should the next Automechanika show be held?



Calendar

Click here to submit an event

Facebook


©DFA Media 1999-2016

Mentés