HELLA’s Bulb Configurator

Published:  20 November, 2017

HELLA’s filament bulb configuration tool helps users easily find the most suitable bulb for the vehicle by giving them access to the

Once the vehicle make, model, year and lighting type have been selected, the tool reveals the standard bulb for the application, while also providing information concerning HELLA’s alternative options. These include Lifetime, Performance, Design and Xenon, making it easy for users to find the most suitable bulb quickly and efficiently. They can then take advantage of the tool’s ability to demonstrate

The ‘compare mode’ tab allows users to view a 3D visualisation for each selection in order for them to see how the bulbs will illuminate the road in a realistic environment, so making it easier to understand the difference between them and therefore find the most appropriate solution. This feature is also ideal for the workshop/customer relationship, as it allows them to demonstrate a commitment to provide customers with choice.


www.hella.com/MicroSite/bulbs/en/

Related Articles

  • Connecting to tomorrow’s lean workshop 

    In a previous article, I had written about the fourth industrial revolution, but I suspect that this may not have been the most threatening topic that you were thinking about concerning your day-to-day workshop business – the business of diagnosing and repairing cars, using a range of workshop equipment and agreeing ‘partnership’ relationships for the technical data and replacement spare parts.

    The way that you work may have evolved over the years, mainly due to the increasing vehicle technology, but the basic principle has remained the same. You have customers who choose to come to you due to the good service and competitive pricing that you provide. However, the world of vehicle repair is changing and if you do not adapt, you will die. Unlike previous industrial revolutions, the pace of change is now much faster. So how is this going to impact the aftermarket?

    Approach
    The ‘internet of things’ (IOT) will change the approach to diagnostics, service and repair of vehicles, but also the way that the workshop equipment will be connected, the way that you handle your customers’ data and the way that you exchange data outside of the workshop, both as a consumer of data, but also as a data provider in data trading eco systems. All this will change the way that you do business. This might all sound like some science fiction concept, but this is already happening today with many vehicle manufacturers and their associated main dealer workshops. If the aftermarket does not start to develop the same approach and service offers, then it will not be able to compete.
        
    However, to understand this better, let’s start with today’s ‘classical business model’ and then see what will change. Today it all starts with your ability to directly communicate with both your customer and with their vehicle and (for the more difficult jobs once that vehicle is in the workshop) your ability to offer a competitive quotation.
        
    Once the vehicle is in your workshop, the diagnostic work or the replacement parts are identified, the parts ordered and the ‘complete repair process’ is conducted. However, there are three fundamental aspects to ensure that this process can be fulfilled – firstly, being in direct contact with the customer, secondly, being able to directly access their vehicle via the OBD plug and subsequently its data and thirdly, using that information to conduct
    the complete repair process in the workshop.

    Internet of things
    So, what is changing and how will the ‘IOT’ help to implement new and ‘lean’ business models to remain competitive? It will still all start with the ‘repair process’, but this will no longer be with the customer initially calling you or coming into the workshop with a question of ‘can you fix my car?’, but it will be through remote monitoring of the ‘thing’ – the vehicle (via OBD plug-in devices or in-vehicle telematics platforms) to conduct remote diagnostics, prognostics and predictive maintenance services. This will inform you when the vehicle needs work and should lead into being able to contact the customer and offer a competitive quotation for the work needed that ultimately should still result in the vehicle coming into the workshop.
        
    When the vehicle does arrive, you will already know the details of the vehicle and the necessary work, so can configure the workshop resources (which ramp, what workshop equipment, what technical data, what replacement parts etc.), before the vehicle arrives.
        
    You can also ensure that the various ‘external data’ that may be needed for the job is pre-arranged and can be downloaded into the specific workshop equipment which is needed as part of the repair process. This can be a ‘just in time’ download of the technical data, the diagnostic test routine, the replacement part fitment method and so on. All this can easily reduce the workshop time needed to complete the repair process by 50%.

    Captured
    This may already sound like a great move forward to be lean, more profitable and more competitive, but there is even more! You also now have new ways to use the data that you have captured. Not only will you know the faults of the specific make and model of vehicle, which in turn, you will store in your database (non-personal, machine generated data), but you will also be able to use this data to exchange or trade data with your existing suppliers or other (new) partners to reduce both your costs and theirs. Welcome to the world of data trading – and get used to it, because it will be your future.  The internet of things, means linking to the ‘thing’ (e.g. the vehicle and workshop equipment) and then handling the data created, by using it in new ways to make the whole workshop and vehicle repair process more efficient, as well as supporting new business models beyond just what you can do today in the workshop. However, let’s also take a step back and look at workshop equipment as part of ‘the internet of things’. It already starts with a new range of ‘connected’ workshop equipment that will not only be able to be remotely monitored by the equipment manufacturer to ensure better reliability, together with faster and cheaper repairs, but will also be the basis for ensuring that the technical information you require for the job ‘in hand’ is supplied not only ‘just in time’, but also charged for on a new competitive bidding basis from a range of suppliers and charged on an individual job basis. Going a stage further, you may be able to exchange data with your equipment suppliers so that they can collect ‘big data’ from all their customers and use it for their own new data trading business models and in turn, use this to offset supplying data or services to you at
    a lower cost. This may also apply with your parts suppliers to provide them with better forecasting and trend analysis.

    Data centric
    The classic business model of today that is ‘customer centric’ will change to become ‘data centric’ that creates added value to the consumer’s experience, but also to the service provider – you!

    This change of accessing the vehicle, your customer and use of the vehicle-generated data is a disruptive evolution that will drive (no pun intended) a revolution in the aftermarket. However, the key issue will be the ability to access the vehicle, its data and in-vehicle displays to offer your services when the vehicle needs work and that is likely to be a legislative issue as the vehicle manufacturers try to use their technological advantage to dominate and control tomorrow’s repair and maintenance business. It’s up to you to fight not only for your ‘right to do business’, but for your ability to evolve your current business models into those of tomorrow.

  • Launch UK introduces new X431 Euro Tab 

    Launch UK, has introduced its latest addition to the X-431 range of diagnostic tools, the X-431 Euro Tab. Based on the latest Android technology and Launch vehicle software, the X-431 Euro Tab harnesses Launch’s diagnostic technology, including wide vehicle manufacturer coverage, test functions, dealer level special functions and live data with accurate comparative values. The in-built hi-res camera enables identification of the vehicle model by photographing the licence plate and VIN number, with automatic VIN recognition for most makes and models. It is supplied with a two-year warranty, two-years’ subscription and printer.
    www.launchtech.co.uk

  • Part two The good and THE GREAT  

    In part one, we looked at the start of the ‘diagnostic process.’ The first steps were customer questioning, confirming the fault and knowing the system and its function. These help the technician to build the ‘big picture’ necessary to repair the vehicle correctly.
    In this article we will look at the next four steps.

    Step 4: Gather evidence
    It is easy to overlook this step as many technicians think of it as the overall ‘diagnosis.’ However, once the technician understands the system, gathering evidence will provide key information. This step is normally best carried out with the use of test equipment that does not mean the dismantling of systems and components.

    Many technicians have their own favourite tools and equipment but this list can include (but not limited to)
    the following:
    Scan tool – It is always best practice to record the fault codes present, erase the codes, and then recheck. This means codes which reappear are still current. Remember that a fault code will only indicate a fault with a circuit or its function. It is not always the component listed in the fault code that is at fault

    Oscilloscope – An oscilloscope can be used for a multitude of testing/initial measuring without being intrusive. Some oscilloscope equipment suppliers are looking at systems within high voltages hybrid/electric vehicle technology. The waveforms produced by the test equipment can be used when analysing the evidence and may indicate that a fault exists within a system. An understanding of the system being tested will be necessary to understand the information. This may even include performing sums so all those missed maths lessons at school may come back to haunt you. It may take time to become confident analysing the waveforms, so be patient

    Temperature measuring equipment – This can include the use of thermal imaging cameras. Most systems that produce energy/work will also produce some heat. The temperatures produced vary from system to system. Examples include everything from engine misfires to electrical components, as well as air conditioning system components and mechanical components such as brake and hub assemblies. The possibilities are endless and results can be thought provoking.

    Emission equipment – By measuring the end result, an exhaust gas analyser can show you if the engine is functioning correctly. The incorrect emissions emitted from the exhaust help indicate a system fault or a mechanical fault with the engine

    Technical service bulletins – Many vehicle manufacturers produce technical service bulletins (TSBs) that are generated by a central point (usually a technical department) from the information that is gathered from their network of dealers. Some of these may be available to the independent sector either through the VM or through a third party – It’s always worth checking if these exist. They may indicate a common fault that has been reported similar to that the technician is facing. Some test equipment suppliers may provide TSBs as part of a diagnostic tool package

    Software updates – Many vehicle systems are controlled by a ECU. Most vehicle manufacturers are constantly updating system software to overcome various faults/  customer concerns. Simply by updating the software can fix the vehicles problem without any other intervention of repairing a possible fault. This is where having a link to a vehicle manufacturer is vital in repairing the vehicle

    Hints & tips – Most technicians will have a link or access to a vehicle repair forum where they can ask various questions on vehicle faults and may get some indication of which system components are likely to cause a vehicle fault

    Functional checks – Vehicle systems are interlinked and typically share information using a vehicle network. The fault may cause another system to function incorrectly, so it is vitally important that the technician carries out a functional check to see if the reported fault has an effect on another system. By carrying out this check the technician again is building the big picture

    Actuator checks – Most systems today are capable of performing actuator tests. The technician can perform various checks to components to check its operation and if the system ECU can control the component, often reducing the time to the diagnosis, by performing this task the technician can identify whether it is the control signal, wiring or component or it is sensor wiring. This function can be used in conjunction with serial data to see how the system reacts as the component functions

    Serial (live) data – The technician can typically review a vehicle system serial data through a scan tool. Having live data readings to refer to can help you review the data captured. Using actuator checks and viewing the serial data can also help the technician to identify a system fault

    Remember to record all the evidence gathered so it can be analysed during the next step in the diagnosis. We can’t remember everything. If the technician needs to contact a technical helpline they will ask for the actual readings obtained recoding the data gathered will help.

    Step 5: Analyse the evidence
    Analysing evidence gathered during the previous steps can take time. The technician needs to build the big picture from all the evidence gathered during the first few steps. You need to analyse the information gathered, and decide on what information is right and wrong.

    This step may rely on experience as well as knowledge on the product. You should take your time – don’t be hurried. Time spent in the thinking stages of the diagnosis can save time later. Putting pressure on the technician can lead to errors being made. It may be necessary to ask the opinion of other technicians. If the evidence is documented it may be easier to analyse or share between others.

    Step 6: Plan the test routine
    After analysing the evidence gathered it’s now time to start to ‘plan’ the best way to approach to the task or tasks in hand.

    The technician should plan their test routine, decide on what test equipment should they use, what results are they expecting, if the result is good or bad  and which component should they test next.

    Document the plan – this enables you to review decisions made at this stage in the next step. The technician may not always get it right as there may be various routes to test systems/components. The test routine may have to be revisited depending on the results gathered during testing. Documenting the test routine will provide a map.  Also, don’t forget to list the stages, as this is something that could be incorporated into an invoicing structure later.

    The technician should indicate on the routine what readings they expect when they carry out the system testing. This can be generated by their own knowledge/skill or the expected readings may come from vehicle information which they have already sourced. If the information is not known at the time the test routine is planned, then the test routine may highlight what information is required and what test equipment is needed. You shouldn’t be afraid to revisit the plan at any time and ask further questions on which direction the tests should take. If the plan is well documented and the technician becomes stuck at any point, they can pause the process and revisit later. Also the information can then be shared with various helplines that support workshop networks.

    Step 7: System testing
    The technician then follows their pre-determined plan, if it is documented they can record the results of the test(s) as they follow the routine.

    Many technicians tend to go a little off-piste when they get frustrated. Having the routine documented can keep the technician on track and focused on the result. If the routine is followed and the fault cannot be found the technician may have to go back to the analysing the evidence or planning the test routine. The technician shouldn’t be scared of going back a few steps, as I said previously analysing the evidence takes practice and can be time consuming, not to be rushed.
        
    Summing up
    Remember to follow the process. It is easy to be led off track by various distractions but don’t try to short circuit the process. Some steps may take longer than first thought to accomplish than others. Some distractions may be outside of your control, and it may be necessary to educate others. Practice, practice, practice. Refine the process to fit in with your business and its practices, the business could align its estimating/cost modelling to the process, being able to charge effectively and keeping the customer informed at each stage of the process.

    Coming up...
    In the next article I will be looking at the next four steps which are; Step 8: Conclusion (the root cause), Step 9: Rectify the fault and Step 10: Recheck the system(s). The last article in this series will indicate the final three steps and how to fit them all together in order to become a great technician and perhaps succeed in Top Technician or Top Garage in 2018.



  • SO FAR... so good 

    You may have read about some of the challenges that the aftermarket has faced over the last year or two as part of the vehicle Type Approval revisions – with their inherent ‘rights of access to repair and maintenance information’ and the associated fight to maintain access to the vehicle data via the ever-so-not-so-humble 16 pin OBD connector.

    The draft vehicle Type Approval document has been agreed by the European Commission and the Council (Member States), but has now to be approved by the European Parliament before becoming the final version which in turn, will become new legislation. However, as many of the key aftermarket amendments were tabled by the Parliament, it seems unlikely that these will be changed, but there is always an uncertainty until the final plenary vote is done.
        
    So once agreed, that will be that, as they say. Unfortunately not, as the devil is in the detail.

    Legal reference
    Firstly, there is the additional problem of existing Block Exemption and Euro 5 Regulations which do not provide the critical legal reference to enable access to in-vehicle data beyond just emissions. The standardisation requirements are included, but not the data and information for the wider diagnostic, repair and maintenance data. This means that vehicle manufacturers can claim that access to the vehicle and the corresponding ‘wider data’ does not have to be provided. This is currently being challenged by the Aftermarket Associations in Brussels, but no solution has yet been agreed for those contentious claims and there will be many vehicles on the roads with restricted access before a workable solution can be agreed and implemented.

    As vehicle manufacturers are likely to be in contradiction with these existing Type Approval requirements, it is also likely that they will have to provide access, but this may well be through the use of electronic certificates. As each vehicle manufacturer has their own certificate strategy (process, access criteria, data available etc.), this is still a significant problem and in some cases could mean multiple certificates are needed to work on the different vehicle systems on specific models. It is also important that certificates can be used without the necessity of having to use the vehicle manufacturer’s dedicated diagnostic tool and an online connection to their server to generate the required certificate when using the 16 pin connector.

    However, the new vehicle Type Approval legislation should now provide the legal reference for the physical connector and critically, also contain a reference to the data needed for diagnostics, OBD, repair and maintenance, but beyond these important requirements there are still other elements which have yet to be discussed or agreed.

    Logical cascade     
    These other issues revolve around the secure access for independent operators, together with the exact data that will be made available once access has been granted. This may sound strange, but the 16 pin OBD port is increasingly seen as a high security risk access point into the in-vehicle networks. Consequently, some form of controlled access is highly likely to be implemented, even for such seemingly mundane tasks as checking safety system trouble codes when conducting an MOT test. This is also likely to be a ‘certificate based’ system and this introduces a whole range of new challenges!

    To understand these various issues more clearly, there is a logical cascade which starts with the legal requirement for a connector to be fitted to a vehicle. This is covered as part of vehicle Type Approval legislation, and this legislation also includes the need for the connector to be standardised from both the aspect of the physical shape and connector pin layout, but also what data or information is needed for emission systems, as well as the communication protocols that must be used. All these legislative elements have been in place for more than two decades, but the wider use of the 16 pin connector for diagnostic, repair and maintenance requirements had until the current revision of the vehicle Type Approval legislation, not been legally referenced. Now that this has (hopefully) been addressed, the next key discussions will be about who can access the vehicle via this connector, how this can be authenticated and once access is provided, what data, information and functions will be supported.

    As mentioned earlier, this is likely to require electronic certificates, but to avoid the ‘wild west’ of different processes, access conditions and data availability, a standardised process should be considered by the legislator which also uses a single and independent point of access for certificates from all vehicle manufacturers. It should also be possible to access in-vehicle data without a certificate when the vehicle is in the workshop, although software updates may require certificates. When the vehicle is being driven, ‘read-only’ data should still be available and a certificate should only be needed if some form of ‘functional’ testing is required, but this should be considered as the exception. As there is an increasing use of ‘plug-in’ devices being used to allow remote communication with the vehicle when it is being driven for services such as insurance, or remote monitoring for prognostics and predictive maintenance, arguably, the importance of the OBD connector is increasing for these telematics services – even if the data it can provide is restricted in relation to what is available via the vehicle manufacturers’ embedded
    telematics systems.

    Further requirements
    Once data is accessed, the new General Data Protection Regulation (GDPR), which comes into force in May this year, will impose further requirements for the use and handling of personal data.  A fundamental issue will be that much of the data contained in the vehicle can also be considered personal data and is subject to data protection legislation. Critically, the customer must give their consent to the use of this data by a positive action or statement – it cannot be assumed.    

    As you can see, it may be ‘so far, so good’, but the simple task of continuing to plug into the 16 pin connector and diagnosing or repairing the vehicle is going to be far from simple, with many hurdles and challenges yet to be addressed, but the aftermarket associations, both in the UK and with their pan-European partners, are continuing to fight for the ability to do so.


    xenconsultancy.com

  • Launch UK introduces new X431 Euro Tab 

    Launch UK, has introduced its latest addition to the X-431 range of diagnostic tools, the X-431 Euro Tab. Based on the latest Android technology and Launch vehicle software, the X-431 Euro Tab harnesses Launch’s diagnostic technology, including wide vehicle manufacturer coverage, test functions, dealer level special functions and live data with accurate comparative values. The in-built hi-res camera enables identification of the vehicle model by photographing the licence plate and VIN number, with automatic VIN recognition for most makes and models. It is supplied with a two-year warranty, two-years’ subscription and printer.
    www.launchtech.co.uk

Most read content


Search

Sign Up

For the latest news and updates from Aftermarket Magazine.


Poll

Where should the next Automechanika show be held?



Facebook


©DFA Media 1999-2018