“The future is electric” - IMI submits final evidence on technician licencing for Bill

Published:  20 November, 2017

The Institute of the Motor Industry (IMI) has submitted its closing evidence for Parliament’s consideration regarding a Licence to Practice for vehicle technicians working on the high-voltage systems of electric and hybrid vehicles.

The IMI has published evidence that will assist the Automated and Electric Vehicle Bill Committee reach a decision on the proposed   licencing scheme.

IMI chief executive Steve Nash commented: “The IMI’s primary concern is the health and safety of the people it represents. Electricians working on domestic or commercial electrics are regulated by the Electricity at Work Act which requires them to be appropriately trained and qualified, yet there is a glaring inconsistency in allowing absolutely anybody to work on electrified vehicles which operate at potentially lethal voltages.

“The future of automotive is electric and the government are playing a very direct role in encouraging and accelerating this transition. We are just trying to ensure that the appropriate frameworks are put in place to support this.”

Related Articles

  • Hybrid and electric power threatened by underinvestment warns IMI 

    More UK motorists than ever are choosing electric and hybrid vehicles but the trend could be threatened if infrastructure investment does not keep pace, the IMI has warned.

  • technologies of electric and hybrid vehicles  

    In the previous two issues, we looked at the way batteries store energy. We could in fact compare a battery to a conventional fuel tank because the battery and the tank both store energy; but one big difference between a fuel tank and a battery is the process of storing the energy. Petrol and diesel fuel are pumped into the tank in liquid/chemical form and then stored in the same form. Meanwhile, a battery is charged using electrical energy that then has to be converted (within the battery) into a chemical form so that the energy can be stored.

    One of the big problems for many potential owners of pure electric vehicles is the relatively slow process of
    re-charging the batteries compared to the short time that it takes to re-fill a petrol or diesel fuel tank. If the battery is getting low on energy, the driver then has to find somewhere to re-charge the batteries, and this leads to what is now being termed ‘range anxiety’ for drivers.

    Whilst some vehicle owners might only travel short distances and then have the facility to re-charge batteries at home, not all drivers have convenient driveways and charging facilities. Therefore, batteries will have to be re-charged at remote charging points such as at fuel stations or motorway services; and this is especially true on longer journeys. The obvious solution is a hybrid vehicle where a petrol or diesel engine drives a generator to charge the batteries and power the electric motor, and for most hybrids the engine can also directly propel the vehicle. However, much of the driving will then still rely on using the internal combustion engine that uses fossil fuels and produces unwanted emissions. The pure electric vehicle therefore remains one long term solution for significantly reducing the use of fossil fuels and unwanted emission, but this then requires achieving more acceptable battery re-charging times.

    Charging process and fast charging
    Compared with just a few years ago, charging times have reduced considerably, but there are still some situations where fully re-charging a completely discharged electric vehicle battery pack can in take as long as 20 hours.  It is still not uncommon for re-charging using home based chargers or some remote chargers to take up to 10 hours or more.

    Although there are a few problems that slow down charging times, one critical problem is the heat that is created during charging, which is a problem more associated with the lithium type batteries used in nearly all modern pure electric vehicles (as well as in laptops, mobile phones and some modern aircraft). If too much electricity (too much current) is fed into the batteries too quickly during charging, it can cause the battery cells to overheat and even start fires. Although cooling systems (often liquid cooling systems) are used to help prevent overheating, it is essential to carefully control the charging current (or charging rate) using sophisticated charging control systems that form part of the vehicle’s ‘power electronics systems.’

    Importantly, the overheating problem does in fact become more critical as battery gets closer to being fully charged, so it is in fact possible to provide a relatively high current-fast charge in the earlier stages of charging; but this fast charging must then be slowed down quite considerably when the battery charge reaches around 70% or 80% of full charge. You will therefore see charging times quoted by vehicle manufacturers that typically indicate the time to charge to 80% rather than the time to fully charge. In fact, with careful charging control, many modern battery packs can achieve an 80% charge within 30 minutes or less; but to charge the remaining 20% can then take another 30 minutes or even longer.   

    Battery modules
    Many EV battery packs are constructed using a number of individual batteries that are referred to as battery modules because they actually contain their own individual electronic control systems. Each battery module can then typically contain in the region of four to 12 individual cells.  One example is the first generation Nissan Leaf battery pack that contained 48 battery modules that each contained four cells, thus totalling 192 cells; although at the other extreme, the Tesla Model S used a different arrangement where more the 7,000 individual small cells (roughly the size of AA batteries) where used to form a complete battery pack.

    The charging control systems can use what is effectively a master controller to provide overall charging control. In many cases  the electronics contained in each battery module then provides additional localised control. The localised control systems can make use of temperature sensors that monitor the temperature of the cells contained in each battery module. This then allows the localised controller to restrict the charging rate to the individual cells to prevent overheating. Additionally, the localised controller can also regulate the charging so that the voltages of all the cells in a battery module are the same or balanced.

    One other problem that affect battery charging times is the fact that a battery supplies and has to be charged with direct current (DC) whereas most charging stations (such as home based chargers and many of the remote charging stations) provide an alternating current (AC). Therefore the vehicle’s power electronics system contains a AC to DC converter that handles all of the charging current. However, passing high currents through the AC to DC converter also creates a lot of heat, and therefore liquid cooling systems are again used to reduce temperatures of the power electronics. Even with efficient cooling systems, rapid charging using very high charging currents would require more costly AC to DC converters; therefore, the on-board AC to DC converter can in fact be the limiting factor in how quickly a battery pack can be re-charged. Some models of electric vehicle are actually offered with options of charging control systems: a standard charging control system which provides relatively slow charging or an alternative higher cost system that can handle higher currents and provide more rapid charging.

    Home & Away
    One factor to consider with home based chargers is that a low cost charger could connect directly to the household 13-amp circuit, which would provide relatively slow charging of maybe 10 hours for a battery pack. However, higher power chargers are also available that connect to the 30-amp household circuits (in the same way as some cookers and some other appliances); and assuming that the vehicle’s AC to DC converter will allow higher currents, then the charging time could be reduced to maybe 4 hours operate (but note that all the quoted times will vary with different chargers and different vehicles).

    Finally, there are high powered chargers (often referred to as super-chargers) that are usually located at motorway services or other locations. These super-chargers all provide much higher charging currents to provide fast-charging (as long as the vehicle electronics and battery pack accept the high currents); but in a lot of cases, these super-chargers contain their own AC to DC converter, which allows direct current to be supplied to the vehicle charging port. In effect, the vehicle’s on-board AC to DC charger is by-passed during charging thus eliminating the overheating problem and the high current DC is then fed directly to the battery via the charging control system.

    In reality, the potential for re-charging a battery pack to 80% of its full charge in 30 minutes or less usually relies on using one of the super-chargers, but battery technology and charging systems are improving constantly, so we
    will without doubt see improving charges times for
    newer vehicles.  

  • technologies of electric and hybrid vehicles 

    Having recently presented short seminars about electric vehicle technology at Top Tech Live, and at some other trade events, it has become clear that technicians are only slowly beginning to delve into the
    world of electric and hybrid vehicle technologies.   

  • IMI launches new international EV training solution   

    Launching today (Tuesday 11 September) at Automechanika Frankfurt, the IMI is showcasing its new Electric Vehicle eLearning modules designed to transform the way people undertake training within the workplace.

    With full-electric car sales in the EU set to reach 200,000 this year, the IMI has connected with Germany’s training academy, Lucas Nülle, to make continual learning convenient and interactive for individuals of all abilities.

    Steve Nash, Chief Executive at the IMI, said: “Making sure that an employer and its employees are ready for the increased number of ultra-low emission vehicles is paramount to future-proofing a business. Being able to service and maintain these vehicles safely should be the key focus, especially when the industry is experiencing the biggest growth in automotive technology that we’ve ever seen.

    “Advances in new technology are creating hundreds of thousands of new jobs across the world, and individuals working in the industry should be adopting this new training to make themselves leaders in their area of expertise. It’s an exciting time for the motor industry and the IMI is committed to making sure we’re ready to embrace the changes that are set to transform the sector.”

  • IMI: UK garages unprepared for EV surge 

    The Institute of the Motor Industry (IMI), has voiced its concern for the safety of technicians after electric vehicle sales reach a record high.


Search

Sign Up

For the latest news and updates from Aftermarket Magazine.


Poll

Where should the next Automechanika show be held?



Facebook


©DFA Media 1999-2018