How can you test what you can't see?

John Batten shows how you can never be complacent about skills, as you always need to be ready for what might come through the door

By John Batten | Published:  30 April, 2018

Life as a business owner can often be as challenging as it is rewarding, in fact overcoming these challenges is half of the reward for many, especially when it comes to accurately diagnosing the undiagnosable.
    
Many businesses build a reputation locally on the fact they’re able to find faults that others can’t. This acts as a point of differentiation, which is great. Developing this reputation in your locale can pays dividends, as customers become less price focused when they know why you’re different to your competition.
    
What a great place to be. Your customers love you because you’re effective in your diagnosis and you get paid well for doing this. What’s not to like about that? Not a lot!

Sounds great but…  
 
If it were that easy, everyone would be doing it. Easy? Definitely not, but then anything worth achieving never is. Here’s the deal though – It’s not difficult either, although it does take some deliberate thought on the part of the business owner. The kind of technical success that’s required for a reputation like this is within the grasp of all garage owners; It just takes the commitment to change and a willingness to plan for the change required.

The owner is clearly responsible for the health and continuing success of their business, but with so much demand on their time creating a technical team to differentiate your business from your competition is not always at the forefront of their mind.

The best time to plant a tree…
Was 20 years ago. The second best time is now. As proverbs go that one hits the mark when it comes to developing anyone within your business. The question is, where to start?
    
Skills analysis is a good a place as any. What skills do your technical team currently possess? Do you have a team of technical superheroes today and just need to turn on the marketing tap to increase your bottom line numbers? Or do you have a hero in the making and need to take a look at the training required before you buy them a cape? If you’ve a hero in the making then that’s great! There’s nothing more satisfying for a technician and the business owner when they embark together on a symbiotic journey of development. The technician will feel invested in and the owner will have a stronger team and be able to promote their newfound skills increasing efficiency and profit. A win-win for everyone!
    
So you’ve got your training plan in place and the technical skills of your team are moving in the right direction. Time to put your feet back up on the desk? Not quite. Continued success means that not only do you need to be able to efficiently repair what’s in your workshop today, but see what’s coming over the hill and ensure you have the skills and equipment for tomorrows car park.

I’m sure you’ve heard diesel fuel being called into question as a long term option for powering our vehicles and that we’ll all be driving dodgems (or some other electric vehicle) as the future of motoring. But is there an alternative that has both a foot in today and an eye on tomorrow? Oh yes, I’d almost forgotten… It’s petrol. More specifically gasoline direct injection (GDi).

The ‘new old’ technology
GDi has been with us for some time and in reasonable quantities since the early noughties. This means there are bucket loads of these vehicles in your workshops daily. Not only that, but manufacturers are looking at the benefits of taking rail pressure in excess of 500 bar and how this may help with emission reduction. What does this mean for you? Well. If your not sure how to effectively diagnose these vehicles then there’s no better time to learn. Plus it’s probably here for some time to come. With that in mind it shouldn’t come as a surprise that my technical article this month is a 2L GDi Audi A3.

No time to hesitate
The customer complaint on this vehicle was a rough idle and hesitant pick up on light throttle. Following my own mantra, I started Johnny’s 15-step diagnostic process with a thorough questioning of the client whilst experiencing the issue with them. It was indeed ‘stumbly’ (believe it or not that is a technical term – in my world anyway) and I followed this with a look at fault codes and inspected serial data. There was nothing to write home about here, neither was there with the tests for mechanical integrity or ignition diagnosis. So where does that leave us? Just fuelling.

Under pressure
With just fuelling left as the option for our hesitation low and high-pressure systems were evaluated and again no fault found, that just left injection quality or quantity.
    
GDi Injectors differ from manifold injectors not only in their position (GDi injecting straight into the cylinder) but also in their electrical characteristics. The high current driver (10 Amps, see figure 1) enables fast multiple injections not dissimilar to that of solenoid diesel injectors. All injectors were inspected electrically and again no fault found. We were fast running out of test options for fuelling... What to do?

How can you test what you can’t see?
We had seen similar issues before and figured I’d try and identify a dribbly injector (there I go getting all technical again) prior to its removal from the cylinder. We ran the engine and stopped it, isolated the breather system and removed a spark plug, then tested for HCs in each cylinder waiting for a drip and a rise in HCs. What did we find? Nada, Zilch, Nothing! There was nothing for it the injectors would have to come out and be tested.    
    
It just so happens were fortunate enough to have a Carbon Zapp test bench in the training center. This gives us the capability to test GDi injectors at high pressure. It’s a cool piece of tech that runs the injector through an automated test plan, giving a pass/fail report on the injection characteristics. After testing each injector I was delighted to find one
of these was defective and the fault found.
    
If you’d like to see the injector being bench tested then head over to www.autoiq.co.uk/blog where you can watch a video. So there we go another car fixed, and I’m sure this happens in your workshop on a daily basis. But here’s a question for you: Do you have a program of technical development to help your team work efficiently? And can you differentiate your business from those around you? If it’s a yes to both then brilliant, you’re set for the future! If not then give me a call at Auto iQ on 01604 328500 and I’ll be only too pleased to help your business develop a plan for your continued success.




Related Articles

  • Tools to survive and thrive 

    My life as a business owner, trainer and technician is an interesting one. I was recently spending some time with a client after a course just shooting the breeze. You know the kind of thing, a cuppa, a cake and an hour just putting the world
    to rights.
        
    Part way through our conversation Matt proclaimed that I must be “living the dream!” This made me stop and think (something I’ve been told not to do by my wife) about how I am indeed very fortunate to have a career doing something I truly love.

    Wading through treacle
    Spending my days with like-minded business owners and technicians, helping them drive their careers and businesses forward. What’s not to like about that? Not much, but has my work life always been like skipping through meadow on a sunny day?
        
    Quite frankly… No! Don’t get me wrong –  I’m a glass half full sort of chap and regardless of the task ahead I’ll give it my best and persevere until success emerges. However, on many occasions in my diagnostic career it was just like wading through treacle, and therein lies my point. To get to a place where you’re ‘living the dream’ you need wellies! Show me a successful technician and I’ll show you someone who’s great at wading. They’ve just waded long enough to build a versatile skill set along
    the way.

    The recipe for success
    As with most things in life there are essential ingredients. With the right ingredients you’ll successfully avoid the diagnostic treacle swamp and swap this for a faster and more enjoyable repair experience.
        
    “What’s this recipe?” I hear you cry. It has six elements that when bought together produce truly remarkable results. They are;

  • Electric future shock  

    The need to adapt to changing vehicle technology is one of the main challenges of our time in the sector. Increasing connectivity and a vastly more complicated conventional vehicle provide a whole raft of obstacles on their own, before you even get to the rise of electric vehicles and hybrids.

    Add to that a more uncertain legislative environment resulting from rules not quite keeping up with the technology coming in, and you’ve got yourself a whole host of issues that the entire industry needs to stay on top of if it is going to continue to offer a sterling service to customers.

    Let’s look at electric vehicles. For Tom Harrison Lord from Fox Agency, the b2b marketing company specialising in the automotive sector,  Automechanika Birmingham offered a troubling glimpse into the future:  “This summer’s Automechanika Birmingham was entertaining and enjoyable as ever, but it also exemplified a worrying trend in the motor industry today. With the advancement of electric vehicles, there are going to be some rapid and stark changes ahead. The automotive aftermarket, however, seems to be burying its head in the sand.”


    Access
    The key, as it has been in the past, is access. In this case, the right to be able to repair vehicles. Think that’s all sorted? Perhaps not:  “The rise of the electric cars and vehicles is something that could hit the automotive aftermarket hard – in particular, independent garages.

    “Many, if not all, electric vehicles invalidate their manufacturer warranty if essential work is carried out on the electrical systems by someone other than the main dealer. What’s more, many cars with batteries, such as the Mitsubishi Outlander PHEV, have warranties on the electrical components lasting up to ten years.

    “Having no choice but to use the main dealer for a full decade shows just why independent workshops will have fewer vehicles coming through the doors in the years ahead.”

  • Ben’s 'Hats on 4 Mental Health Day' fundraiser returns  

    This year's Hats on 4 Mental Health Day, organised by Ben is taking place on 13 October, during the week of World Mental Health Day.

  • Well it was like that last year mate! And you passed it then…  

    How many warning lights does it take to create an MOT fail? Put simply, just one - but how many choices do we have?  
        
    Looking through the revised testing manual it’s hard pick out these faults amongst so many changes. Let’s see if we can summarise them for you as a refresher on what fails, some new and some old. Below is a list of
    major failures:

  • Part Seven: Electric and hybrid vehicles  

    Over the past few months, we have looked at battery and electric motor technologies of electric and hybrid vehicles,
    as well as looking at the advantages and disadvantages of batter power compared to fossil fuel power.  
        
    Irrespective of whether a vehicle is powered solely by batteries and an electric motor or whether the vehicle is a hybrid that has the addition of a petrol engine for propulsion and
    re-charging the batteries, the vehicle will require a sophisticated electronic system to manage and modify the electrical energy. In effect, the vehicles have an electrical management system that is often referred to as the ‘power electronics’.

    Controlling electric motor speed and power
    The obvious task of the power electronics system is to control the speed and power of the electric motor so that the vehicle can be driven at the required speed and achieve the required acceleration. As mentioned in a previous article, with Alternating Current (AC) motors the motor speed is regulated by altering the frequency of the 3-phases of alternating current. For light load cruise driving, the current flow provided by the battery pack to the electric motor might only be in the region of a 70 or 80 amps or less, but when the vehicle is being driven under high load conditions, the current requirement will be much higher. Therefore the power electronics can allow higher current flows to be delivered to the electric motor, with some reports quoting as high as 1,800 amps for brief periods on some Tesla vehicles during hard acceleration. However, the power electronics system will monitor currents and temperatures of the electronics, the batteries and the electric motor to ensure that overheating and damage do not occur. As an additional function, the power electronics systems will also control the cooling system (often a liquid cooling system) for the electronics, the batteries and the motor to help maintain acceptable temperatures.
        
    Because most modern electric motors fitted to electric and hybrid vehicles are alternating current motors, the power electronics system must convert the direct current supplied by the battery into alternating current. The power electronics system therefore contains a DC to AC inverter.

    Battery charging from a home charger or remote charging point
    For pure electric vehicles the batteries are re-charged from home based chargers or remote charging points (and this is also true for many later generations of hybrid vehicles). The battery charging must be carefully controlled to prevent overheating and damage, therefore the power electronics system contains a charging control system to regulate the charging rate (voltage and current). Most charging devices provide alternating current, therefore an AC to DC converter forms part of the power electronics system to enable the batteries to receive direct current.
        
    Note that for rapid charging (especially with lithium based batteries), the power electronics system can regulate the charging rate so that the batteries re-charge up to about 80% capacity relatively quickly (perhaps within 20 to 30 minutes with fast chargers), but to prevent overheating and damage, the charging rate is then significantly reduced for the remaining 20%
    of charge.

    Battery charging from an engine driven generator
    Most mass produced hybrid vehicles use an internal combustion engine that can propel the vehicle, but the engine also drives a generator that can re-charge the main high voltage batteries. While the engine is running, the power electronics system again controls the charging rate; and again, the output from the generator passes through the AC to DC converter. Note that the power electronics system will be linked to or integrated with the engine management system, which will allow the power electronics to cause the engine to start and generate electricity if the batteries are low on stored electrical energy.
        
    Because the electric motors fitted to electric and hybrid vehicles can usually function also as generators, when the vehicle is decelerating or braking (or coasting), the electric motor can therefore be used to help re-charge the batteries. The electrical output from the motor/generator will vary with speed; therefore the power electronics system must control the charging rate to the batteries. As with home/remote charging and charging with an engine driven generator, because the motor/generator produces an AC current, the generator output must pass through the AC to DC converter.

    12-Volt battery charging
    A 12-Volt electrical system is still used for electric vehicles, but because there is no engine driven alternator, the 12-volt battery is charged using power from the high voltage system. The power electronics system contains a DC to DC converter that converts the high voltage of the main battery pack down to the required voltage for the 12-volt battery. The charging rate for the 12-volt battery is also controlled by the power electronics system.

    Additional functions of the power electronics system
    As mentioned previously, modern electric vehicles (and hybrid vehicles) will be fitted with cooling systems to maintain the temperatures of the batteries, the electronics and the electric motor. Pure electric vehicles are more likely to be fitted with liquid cooling systems due to the higher currents required for the electric motor that is the only source of propulsion, whereas with hybrid vehicles that also use an internal combustion engine to propel the vehicle generally have less powerful electric motors and therefore often make use of air cooling. However, whichever system is used for cooling, the cooling system can be controlled by the power electronics system to regulate the amount of cooling being applied; note that with liquid cooling systems, the control can also apply to the electric cooling pumps that force the coolant to flow around the cooling system.
        
    Another cooling or heating related function of the power electronics system is to ensure that the battery temperature is at the optimum temperature for charging (and for discharging when the battery is providing electrical power). Batteries charge much more efficiently and faster if they are at the optimum temperature of typically between 10 and 30ºC (or slightly higher for some lithium batteries); but the charging rate should be lowered for lower temperatures; and for many consumer type lithium based batteries, charging is not possible below 0ºC.
        
    Because vehicles are equipped with a cooling/heating systems (for driver/passenger comfort as well as for controlling vehicle system temperatures), the power electronics system can switch on an electrical heater (that would form part of the cooling/heating system) when the batteries are being charged. Therefore, if the vehicle is being charged from a domestic based charger or remote charging station and the ambient temperature is low or below freezing, the battery cooling/heating system can raise the battery temperature to ensure charging take place at the fastest possible rate.



Search

Sign Up

For the latest news and updates from Aftermarket Magazine.


Poll

Where should the next Automechanika show be held?



Facebook


©DFA Media 1999-2018