Diesel diagnostics for the workshop

Frank examines how following tried and tested diagnostic procedures in a consistent way will enable you to successfully find diesel faults

By Frank Massey |

Published:  11 May, 2020

I’m mindful of several recent diagnostic topics that focused on cutting edge opportunities such as noise and vibration analysis. It also reminded me of the most important aspects of fault finding; to focus on the symptoms, ask relevant questions and conduct a methodical approach based on systems knowledge, accurate data and a proven process.

All of this really boils down to training, experience, and confidence. There are no short cuts, cheap fixes or internet gurus. There are however basic steps that are easily introduced into your workshop procedures.

This brings me to the topic in hand. Can we conduct relativity simple tests on common rail diesel systems? Not only can we, but we must! Remember, the foundation rule of fault finding is a simple methodical approach. Don’t expect a magical fix-all in less than 1,000 words. However, I can provide a pathway that will illustrate the area of responsibility and potential investment in time and money.

Vital information
The first vital step is to listen and ask questions. Owners often have vital information. Remember this is not a recipe for short cuts or silver bullets for your machine gun. Your approach will always depend on the extent of problems. Will it run? are there any mechanical noises? Is there a loss of power? if so when? Is the fault intermittent and how did it start? There is an endless list of questions that will help establish a hidden history.

I often find that a physical examination or health check helps understand the way the vehicle has been driven and serviced. This will often expose basic problems especially with charge pressure circuits.

Try to explore all non-intrusive tests first. They may not be entirely logical in order of priority, but do provide results in the minimum time period. With experience, you will hone these steps into a razor-sharp intuitive process.

Serial investigation
Serial investigation is without doubt the correct first step. Do not jump to premature conclusions as serial data often shows symptoms, not cause. For example, a faulty air mass meter will cause EGR calculation error values, incorrect load and boost calculation. This is a common problem with many causes.

The volumetric efficiency relies on the intake system, swirl flap control, turbo spooling, and a free-flowing exhaust system. Please note that I keep my thoughts non-specific yet focused on all possible causes. This is a very important reaction in any diagnostic process.  

Assuming a non-run condition, excluding any serial clues as often there are none, I would always check for the correct rail pressure. This can be done with a DMM. Expect around 1-1.5v with a quick rise time of 0.5-1sec. If it is slow to rise or low, check the priming system including the filter. This should be done with a gauge. Remember pressure, flow and pump current. This will depend on system type so check the schematics carefully. Most systems now prime at 5-6bar.

Isolate components
A slow rise time may be due to an internal leak or worn components within the high-pressure system. This includes the HP pump, rail limit valves, and injectors, as well as volume and pressure regulation devices. Always isolate various components and conduct a blind or proof test before suspecting the pump. They rarely fail, unless run dry or have contaminated fuel.
The PCM requires camshaft position data to sync the injectors and crank position once running. If recent belt replacement or engine repairs have been carried out, add this to your list. To check the injector sync against cam and crank position is a bit technical. To perform you will require a scope and current clamp.

Quite often the serial data identifies the incorrect timing sensor for position error. This is due to the PCM looking at the camshaft first. Slow rotation speed may be due to a faulty or incorrect battery, so check charge and health status with a suitable conductance tester. Yuasa have a fantastic free online training academy.

Next check relative compression. This is a simple cylinder balance check but when compared with current and rotation calculation will accurately predict correct compression.

A blocked exhaust or failed open EGR will prevent the correct combustion properties. Exhaust back pressure can easily be proven from the map and DPF pressure sensors. Plotting them with a scope will quickly identify intake or exhaust restrictions. The maximum DPF sensor value cranking or at idle should be 0.5-1.25 volts, 100mbar-1.5psi.

Injector type, solenoid or piezo faults will normally be identified within serial data. A single faulty injector circuit will normally shut down all fuel delivery. It is also worth noting that if a minimum rail pressure is not reached, the injectors will not be activated.
So back to priming. Leaks, faulty rail sensors will all contribute to a non-start.

If you are looking for more information, visit www.ads-global.co.uk for courses and dates, and Autoinform events.


Related Articles


©DFA Media Group
Terms and Conditions